Agent for Documents Clustering using Semantic-based Model and Fuzzy
نویسندگان
چکیده
منابع مشابه
Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation
Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term bas...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولFuzzy Clustering of Documents
This paper presents a short overview of methods for fuzzy clustering and states desired properties for an optimal fuzzy document clustering algorithm. Based on these criteria we chose one of the fuzzy clustering most prominent methods – the c-means, more precisely probabilistic c-means. This algorithm is presented in more detail along with some empirical results of the clustering of 2-dimension...
متن کاملSemantic Oriented Clustering of Documents
Semantic web-based approaches and computational intelligence can be merged in order to get useful tools for several data mining issues. In this work a web-based tagging process followed by a validation step is carried to tag WordNet adjectives with positive, neutral or negative moods. This tagged WordNet is used to define a semantic metric for text documents clustering. Experimental results on ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2013
ISSN: 0975-8887
DOI: 10.5120/10059-4651